Biomedical Engineering

Faculty: Hall, BuSha, Lau, Wagner, Chair, Wei

Biomedical engineers integrate engineering skills with the understanding of the complexity of physiological systems, from the cellular level to the whole body, in order to improve healthcare. Biomedical engineers design instruments, devices, and develop computational models of physiological systems and signals. Some of the well established specialty areas within the field of biomedical engineering are: bioinstrumentation; biomaterials; biomechanics; cell and tissue engineering; medical imaging; rehabilitation engineering; and quantitative modeling of physiology. Biomedical engineers are employed in universities, in industry, in hospitals, in research facilities of educational and medical institutions, in teaching, and in government regulatory agencies.

Program Educational Objectives:

The biomedical engineering program has established the following educational objectives. These objectives outline what TCNJ biomedical engineers are expected to attain within the first few years after graduation.

- To contribute to the economic development of New Jersey, the nation and /or the global community through the ethical practice of engineering;
- To become successful in their chosen career path, whether it is in the practice of engineering, in advanced studies in engineering or science, or in other complementary disciplines;
- To assume leadership roles in their chosen profession;
- To enhance career skills through life-long learning.

Student Outcomes:

The student outcomes listed below are expected of all graduates of the biomedical engineering program. These outcomes outline what TCNJ biomedical engineering graduates are expected to know and be able to do by the time of graduation. These outcomes outline the knowledge, abilities, tools, and skills the program gives the graduates to enable them to accomplish the biomedical engineering program educational objectives.

Biomedical engineering graduates will have:

- 1. an ability to identify, formulate, and solve complex engineering problems by applying principles of engineering, science, and mathematics
- 2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors
- 3. an ability to communicate effectively with a range of audiences
- 4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental, and societal contexts

5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks, and meet objectives

6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions

7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Academic Policies and Standards

A student may repeat any course without seeking approval. However, if a student wishes to repeat a course more than once, permission must be obtained from the chair of the department or coordinator of the program of study and, if appropriate, the chair of the department offering the course. Permission to repeat a major course more than once will be granted only in cases of extreme extenuating circumstances, e.g., illness, financial, etc. When an engineering course is repeated, only the most recent earned grade is counted in the grade point average, although all grades earned will appear on the student's transcript.

Seniors pursuing bachelor of science degrees in an engineering major are required to take the Fundamentals of Engineering Examination for the Professional Engineer's License.

Given the nature of the engineering curricula, it is extremely important to follow the recommended course sequence. Violations of this guideline may result in dismissal from the engineering majors.

Program Entrance, Retention, and Exit Standards

Every major program at the College has set standards for allowing students to remain in that program, to transfer within the College from one program to another, and to graduate from a program. The following are the standards for engineering majors. Minimum grades are noted in parentheses.

- Retention in the engineering programs is based on the following performance standards in these "critical content courses": PHY 201 (C-); MAT 127 (C-), MAT 128 (C-). A student who does not achieve these minimum performance standards, earns a grade of F, and/or has a cumulative GPA of less than 2.0 will be placed on the Engineering Programs Retention List. Placement on the Retention List for two consecutive semesters or three non-consecutive semesters will result in dismissal from the major. Students dismissed from the major may appeal for re-entry into the major.
- To ensure academic success, first year, sophomore, and first-semester junior students will not be permitted to take more than 4.5 course units unless they have a GPA of 2.75 or greater. Upper class students can register for 5.5 course units if they are in good academic standing.
- Entrance (internal transfer) into the engineering programs from another program within the College is based upon the following performance standards in these "foundation courses": PHY 201 (C); MAT 127 (C), Internal transfer within engineering programs will be considered as long as enrollment limits are not exceeded.
- Graduation requires an in-major cumulative GPA of 2.0.

Bachelor of Science in Biomedical Engineering

First Year		
Fall		
CHE	201/General Chemistry I	1 course unit
ENG	142/Fundamentals of Engineering Design	
or		
CSC	215/Computer Science I	1 course unit
ENG	095/Introduction to Engineering	0 course unit
ENG	091/Engineering Seminar I	0 course unit
FSP	First Seminar	1 course unit
MAT	127/Calculus A	1 course unit
PHY	201/General Physics I	1 course unit
Spring	9	
CHE	202/General Chemistry II	1 course unit
CSC	215/Computer Science I	
or		
ENG	142/Fundamentals of Engineering Design	1 course unit
ENG	092/Engineering Seminar II	0 course unit
MAT	128/Calculus B	1 course unit
PHY	202/General Physics II	1 course unit
WRI	102/Academic Writing (if not exempted)	(1 course unit)

Sophomore Year

Fall	l
------	---

BME	251/Fundamentals of Biomedical Engineering	1 course unit
BME	222/Introduction to Mechanics	1 course unit
ENG	212/Circuit Analysis	1 course unit
ENG	214/Circuit Analysis Laboratory	0.5 course unit
ENG	272/Advanced Engineering Mathematics I	1 course unit

Spring

BME	323/Introduction to Biomaterials	1 course unit
BIO	201/Foundations of Biological Inquiry	1 course unit
MAT	229/Multivariable Calculus	1 course unit
ELC	321/Signals and Systems	1 course unit
	Liberal Learning Elective	1 course unit

Junior Year

Fall

BME	313/Biomedical Measurements Laboratory	0.5 course unit
BME	311/Physiological Systems I	1 course unit
CHE	331/Organic Chemistry I	1 course unit
BIO	211/Biology of the Eukaryotic Cell	1 course unit
ENG	093/Engineering Seminar III	0 course unit
ENG	342/Advanced Engineering Mathematics II	1 course unit
	3xx/4xx/Engineering Elective	1 course unit

Spring

BME	333/Physiological Systems Laboratory	0.5 course unit
BME	343/Biomechanics	1 course unit
ENG	094/Engineering Seminar IV	0 course unit
BME	350/Biofluid Mechanics	1 course unit
BME	371/Physiological Systems II	1 course unit
	Technical Elective	1 course unit
TST	161/Creative Design	1 course unit

Senior Year

Fall

BME	450/Mass and Heat Biotransport	1 course unit
	473/Bioinstrumentation	1 course unit
BME	433/Bioinstrumentation Laboratory	0.5 course unit
BME	495/Senior Project I	0.5 course unit
	4xx/Biomedical Engineering Elective	1 course unit
	Liberal Learning Elective	1 course unit
ENG	098/Fundamentals of Engineering Review	0 course unit
ENG	099/Senior Professional Seminar	0 course unit

Spring

480/Physiological Modeling	1 course unit
496/Senior Project II	0.5 course unit
4xx/Biomedical Engineering Elective	1 course unit
Liberal Learning Elective	1 course unit
252/Society, Ethics and Technology	1 course unit
	Liberal Learning Elective

Total course units 39 course units

Seven-Year BS in Biomedical Engineering/MD

Freshman Year

Summer

PHY PHY	201/General Physics I* 202/General Physics II*	1 course unit 1 course unit
Fall		
ENG	095/Introduction to Engineering	0 course unit
ENG	091/Engineering Seminar I	0 course unit
FSP	First Seminar Program	1 course unit
BME	251/Fundamentals of Biomedical Engineering	1 course unit
BME	222 Introduction to Mechanics	1 course unit
ENG	272/Advanced Engineering Mathematics I	1 course unit
ENG	212/Circuits Analysis	1 course unit
ENG	214/Circuits Analysis Laboratory	0.5 course unit

1 course unit

0 course unit

Spring

ELC	321/Signals and Systems	1 course unit
ENG	092/Engineering Seminar II	0 course unit
CSC	215/Computer Science I	1 course unit
BIO	201/Foundations of Biological Inquiry	1 course unit
ENG	142/Fundamentals of Engineering Design	1 course unit
MAT	229/Multivariable Calculus	1 course unit

Sophomore Year

Summer

CHE	201/General Chemistry I	1 course unit
CHE	202/General Chemistry II	1 course unit

Fall

BME	311/Physiological Systems	1 course unit
BME	313/Biomedical Measurements Laboratory	0.5 course unit
ENG	093/Engineering Seminar III	0 course unit
ENG	342/Advanced Engineering Math II	1 course unit
BIO	211/Biology of the Eukaryotic Cell	1 course unit
	3xx/4xx l Engineering Elective	1 course unit
	Liberal Learning Elective	1 course unit

Spring

ENG	094/Engineering Seminar IV	0 course unit
BME	343/Biomechanics	1 course unit
BME	323/Introduction to Biomaterials	1 course unit
BME	371/Physiological Systems II	1 course unit
BME	333/Physiological Systems Laboratory	0.5 course unit
BME	350/Biofluid Mechanics	1 course unit
	Liberal Learning Elective	1 course unit

Junior Year

Summer CHE 331/Organic Chemistry I

CHE	332/Organic Chemistry II (Technical Elective**)1 course unit	
Fall		
BME	473/Bioinstrumentation	1 course unit
BME	433/Bioinstrumentation Laboratory	0.5 course unit
ENG	099/Senior Professional Seminar	0 course unit
BME	4xx/Biomedical Engineering Elective	1 course unit
BME	495/Senior Project I	0.5 course unit
BME	450/Mass and Heat Biotransport Phenomena	1 course unit
TST	161/Creative Design	1 course unit

ENG 098/Fundamentals of Engineering Review

Biomedical Engineering-6

Undergraduate Bulletin 2020-2021

Spring

BME	496/Senior Project II	0.5 course unit
BME	4xx/Biomedical Engineering Elective	1 course unit
BME	480/Physiological Modeling	1 course unit
	Liberal Learning Elective	1 course unit
IDS	252/Society, Ethics and Technology	1 course unit

Total course units at TCNJ

37*** course units

Senior Year at New Jersey Medical School

^{*} Students entering the program must hold advanced placement credit in Calculus A and B, and complete General Physics I and II during the summer prior to their first semester at TCNJ.

^{** 7} year Medical students must take CHE 332 as the technical elective

^{***}Total course units, including AP credit, are 39.